10. Confidence Interval for a Population Proportion

Recall: distribution of sample proportion

The parameter of interest for qualitative data is the proportion of times a particular outcome (a success) occurs.
To estimate population proportion p we use sample proportion

$$
\widehat{\boldsymbol{p}}=\frac{X}{n}
$$

where X is the number of successes in the sample, and \boldsymbol{n} is the sample size. Random variable X has a binomial distribution. However, if sample size n is large (specifically, $n \boldsymbol{p}(1-p)>5$), then sample proportion \widehat{p} is approximately normally distributed:

$$
\widehat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)
$$

This allows us to construct a z-Cl for proportion \boldsymbol{p}.

Large sample confidence interval for \boldsymbol{p}

The $\mathbf{1 0 0}(1-\alpha) \%$ confidence Interval for true proportion p is given by

$$
\widehat{\boldsymbol{p}} \pm z_{\alpha / 2} \sqrt{\widehat{\boldsymbol{p}}(1-\widehat{\boldsymbol{p}}) / n}
$$

This formula provides accurate results when the sample size is large, that is,

$$
n p(1-p)>5 .
$$

Since p is unknown population parameter, in practice, we check $\boldsymbol{n} \widehat{\boldsymbol{p}}(\mathbf{1}-\widehat{\boldsymbol{p}})>5$, because $\boldsymbol{p} \approx \widehat{\boldsymbol{p}}$ by the Law of Large Numbers.

$z-C I$ for proportion p : example

Example 1. A retail lumberyard routinely inspects incoming shipments of lumber from suppliers. For select grade 8 -foot 2-by-4 pine shipments, the lumberyard supervisor chooses one gross (144 boards) randomly from a shipment of several tens of thousands of boards. In the sample, 18 boards are not salable as select grade. Calculate a $95 \% \mathrm{Cl}$ for the proportion in the entire shipment that is not salable as select grade.

$z-C I$ for proportion p : example

Solution.
The sample proportion

$$
\widehat{p}=\frac{18}{144}=.125
$$

Since $\boldsymbol{n} \widehat{\boldsymbol{p}}(\mathbf{1}-\widehat{\boldsymbol{p}})=144 \times .125 \times .875=15.75>5$ the confidence interval is given by

$$
\widehat{p} \pm z_{\alpha / 2} \sqrt{\widehat{p}(1-\widehat{p}) / n}=.125 \pm 1.96 \sqrt{\frac{.125 \times .875}{144}}=.125 \pm .054
$$

Thus, we can claim that with confidence level 95% that the true proportion in the entire shipment that is not salable as select grade lies in the confidence interval.125士. 054

Sample size determination

The required sample size to produce an interval estimator $\widehat{\boldsymbol{p}} \pm W$ that estimates population proportion p with confidence level $1-\alpha$ is given by

$$
n \approx\left(\frac{z_{\alpha / 2} \sqrt{\hat{\boldsymbol{p}}(1-\widehat{p})}}{W}\right)^{2}
$$

Sample size determination

But the value of sample proportion \widehat{p} is unknown, because we only plan to collect observations. There are two ways how we can address this difficulty.

- (historical value of $\widehat{\boldsymbol{p}}$) We can use $\widehat{\boldsymbol{p}}$ from a prior sample.
- (conservative choice of $\widehat{p})$ One can show that $\widehat{p}(\mathbf{1}-\widehat{p}) \leq 1 / 4$. Therefore, we can substitute $\widehat{\boldsymbol{p}}(\mathbf{1}-\widehat{\boldsymbol{p}})$ by its largest possible value to protect ourselves against the worst case scenario. This leads to a more practical formula:

$$
n \approx\left(\frac{z_{\alpha / 2}}{2 W}\right)^{2}
$$

Sample size determination: example

Example 2. A manufacturer of boxes of candy is concerned about the proportion of imperfect boxes - those containing cracked, broken, or otherwise unappetizing candies. How large a sample is needed to get $95 \% \mathrm{Cl}$ for this proportion with a width no greater than . 02 ?
Solution. Since no prior info on the sample proportion is available, we will use the conservative substitution:

$$
n \approx\left(\frac{z_{\alpha / 2}}{2 W}\right)^{2} \approx\left(\frac{1.96}{2 \times .01}\right)^{2} \approx 9604
$$

CI for p : exercises

Exercise 1. A city council commissioned a statistician to estimate the proportion p of voters in favor of a proposal to build a new library. The statistician obtained a random sample of 200 voters, with 112 indicating approval of the proposal.

1. What is a point estimate for p ?
2. Find a 98% confidence interval for p.
3. How large a sample is needed to get the common ± 3 percentage point margin of error with the same 98% confidence level?

CI for p : exercises

Exercise 2. To estimate the proportion p of voters favoring a nuclear freeze in your voting district, how large a random sample is needed to estimate p to within ± 2 percentage points with

1. 90% confidence?
2. 99% confidence?
