3. Measures of Relative Standing, Box Plots and Linear Regression

Percentile

The *p*th percentile of a set of measurements is a value for which:

- at least p% of the measurements are less or equal than that value
- at least (100 p)% of all the measurements are greater or equal than that value

Finding *p*th percentile

- Step 1. Sort the original data set: $X_1, \dots, X_n \to X_{(1)}, \dots, X_{(n)}$
- Step 2. Compute the value of the *locator*

$$L=\frac{p}{100}\times n$$

Here n is the sample size.

Step 3. Computing the percentile now depends on the value of the locator.

a) If *L* is a whole number, then the percentile is given by

$$\frac{X_{(L)}+X_{(L+1)}}{2}.$$

b) If *L* is not a whole number, then round *L* up to [L], and then the percentile is given by $X_{([L])}$.

Commonly used percentiles

- First (lower) decile
- First (lower) quartile Q_1
- Second (middle) quartile Q₂
- Third quartile Q_3
- Ninth (upper) decile

- = 10th percentile
- = 25th percentile
- = 50th percentile
- = 75th percentile
- = 90th percentile

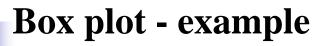
- Interquartile Range: $IQR = Q_3 Q_1$
- Inner Fences: $[Q_1 1.5 \times IQR, Q_3 + 1.5 \times IQR]$

Box plots

Box plot is a pictorial display that provides the main descriptive measures of the measurement set:

- *S* The smallest measurement inside the inner fences
- Q₁ The first quartile
- Q₂ The second quartile or median
- Q₃ The third quartile
- *L* The largest measurement inside the inner fences

- An *outlier* is an observation located at a distance of more than $1.5 \times IQR$ from the box, or the one which is outside the inner fences.
- Outliers are marked on the boxplot separately by stars.



Example 1

Suppose that the return on investment for 21 companies in a certain industry for a certain year is

-24.6 - 2.6 2.4 2.7 3.8 5.6 5.9 6.7 7.0 7.2 7.5 8.0 8.2 8.5 8.6 8.8 9.0 9.2 9.7 10.0 20.5

Draw a boxplot of these data.

Box plot - example

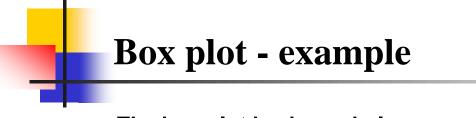
Solution

With n = 21, median is the eleventh score, 7.5. The 25th percentile is 5.6. The 75th percentile is 8.8. Thus, IQR = 8.8 - 5.6 = 3.2.

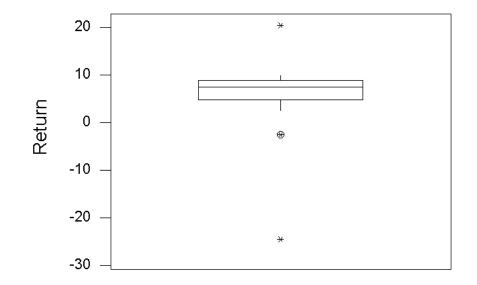
The fences are:

lower inner fence = $5.6 - 1.5 \times 3.2 = .8$ upper inner fence = $8.8 + 1.5 \times 3.2 = 13.6$

The fence test identifies three outliers, -2.6, -24.6 and 20.5. The smallest and largest non-outliers are 2.4 and 10.



The box plot is shown below:

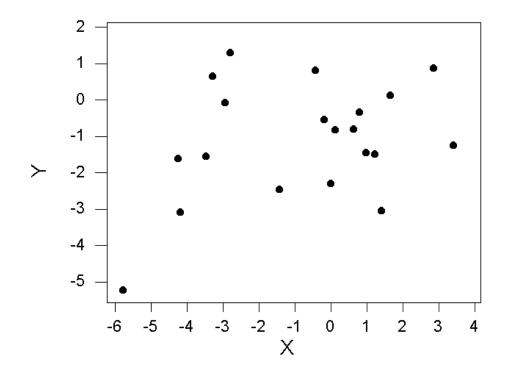


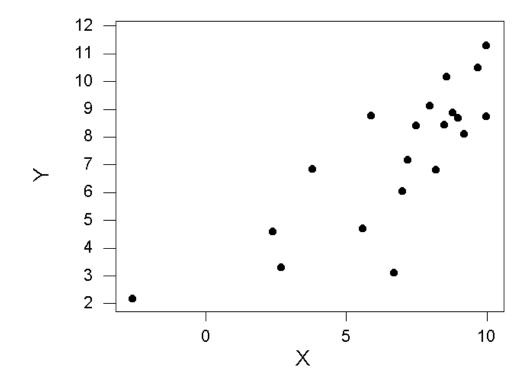
Scatterplot

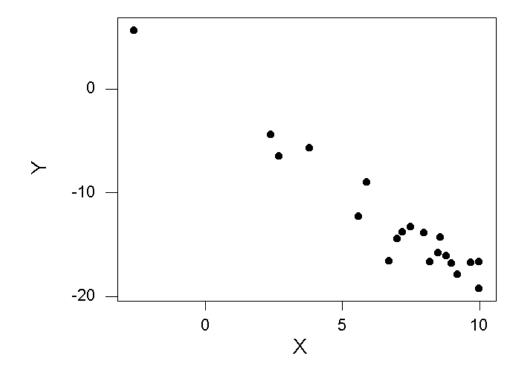
Often we are interested in the relationships between two numerical variables. *Scatterplot* is a two-dimensional plot of one variable versus the other one.

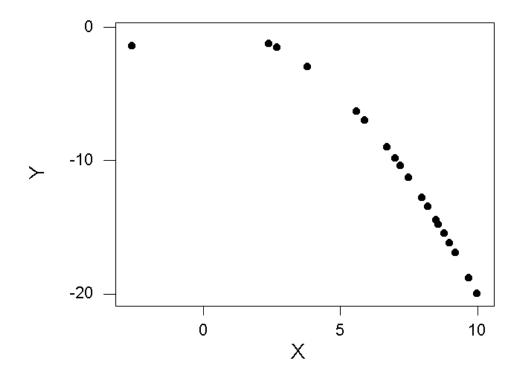
Typical Patterns

- No relationship
- Positive linear relationship
- Negative linear relationship
- Nonlinear (concave, convex) relationship









Correlation coefficient is used for the description of linear relationship between two variables depicted in the scatterplot.

Correlation coefficient

Let us assume that we have two related data sets: X_1, \ldots, X_n and Y_1, \ldots, Y_n .

Then the sample correlation coefficient is given by

$$r=\frac{1}{n-1}\left(Z_{X_1}Z_{Y_1}+\cdots+Z_{X_n}Z_{Y_n}\right)$$

where Z_{X_i} and Z_{Y_i} are *z*-scores of X_i and Y_i , that is, $Z_{X_i} = \frac{X_i - \overline{X}}{S_Y}, \qquad Z_{Y_i} = \frac{Y_i - \overline{Y}}{S_Y}$

Correlation coefficient

One can show mathematically that r is always between -1 and 1.

- If two variables move in the same direction (both increase or both decrease), the correlation coefficient is positive. The closer to 1 the stronger the relationship.
- If two variables move in two opposite directions (one increases when the other one decreases), the correlation is negative. The closer to -1 the stronger the relationship.
- If two variables are unrelated, the correlation will be close to zero.

Regression line

The regression line is the straight line y = mx + b that provides the best least-square fit to the data.

With help of calculus one can show that

$$m = \frac{n(X_1Y_1 + \dots + X_nY_n) - (X_1 + \dots + X_n)(Y_1 + \dots + Y_n)}{n(X_1^2 + \dots + X_n^2) - (X_1 + \dots + X_n)^2}$$

and

$$b = \frac{(Y_1 + \dots + Y_n) - m(X_1 + \dots + X_n)}{n}$$

Regression line and correlation

The slope of regression line and correlation coefficient are related by the following formula.

$$r = m \frac{s_X}{s_Y}$$